Sunday 31 August 2014

JDK 8 Features

Lambda Expressions

The biggest new feature of Java 8 is language level support for lambda expressions.

The point of lambda is to be able to pass some code to a method rather than objects. Until java 8, the way to achieve this in java would be to use callbacks. The issue with callbacks is that it leads to verbose code. Like you would write 5 lines of code when the real job is in 1 of these 5 lines.

The other scenario is when dealing with group of data to execute specific algorithm on it.
Here are few code examples of lambda expressions usage.

Inner classes

An example of what you would do today:
btn.setOnAction(new EventHandler<ActionEvent>() {
    @Override
    public void handle(ActionEvent event) {
        System.out.println("Hello World!");
    }
});
With lambda in java 8 you just have:
btn.setOnAction(
    event -> System.out.println("Hello World!")
);

Method references

Two examples with static and non statics methods.
Statics method:
public class Utils {
    public static int compareByLength(String in, String out){
        return in.length() - out.length();
    }
}

public class MyClass {
    public void doSomething() {
        String[] args = new String[] {"microsoft","apple","linux","oracle"}
        Arrays.sort(args, Utils::compareByLength);
    } 
}
Non statics method:
public class MyClass implements Comparable<MyObject> {
    
    @Override
    public int compareTo(MyObject obj) {return ...}

    public void doSomething() {
        MyObject myObject = new MyObject();
        Arrays.sort(args, myObject::compareTo);
    } 
}

Date/Time changes

The Date/Time API is moved to java.time package and Joda time format is followed. Another goodie is that most classes are Threadsafe and immutable.

Stream Collection Types (java.util.stream)

A stream is a iterator that allows a single run over the collection it is called on. You can use streams to perform functional operations like filer or map/reduce over collections which can be streamed as individual elements using Stream objects. Streams can run sequentially or parallely as desired. The parallel mode makes use of fork/join framework and can leverage power of multiple cores.

Other – (nice to have) Changes

String.join() method is a welcome addition as a lot of self created utility classes are created instead. So, the following example

String abc= String.join(" ", "Java", "8");
Will get evaluated as “Java 8″.

Annotation on Java Types

Base64 Encoding/Decoding


Defines a standard API for BASE64 Encoding and Decoding
java.util.Base64.Encoder
java.util.Base64.Decoder

This feature means we don’t have to search around for other implementations, making things a bit easier.

Encoding

String base64 = Base64.getEncoder().encodeToString("string to encode".getBytes("utf-8"));

Decoding

byte[] asBytes = Base64.getDecoder().decode("your base 64 string");

Functional interfaces

A functional interface is the one that defines exactly one abstract method. We have for instance “java.lang.Runnable” defining the run abstract method:
public abstract void run();
We can still add as many default methods (non abstract) as we like.
While defining a new functional interface, we will have to define the new annotation “@FunctionalInterface”. This will allow us to block bad usages of functional interfaces as it will not compile if used improperly with the new annotation.

Remove the Permanent Generation

That is definitely a big one. The Permanent Generation (PermGen) space has completely been removed and is kind of replaced by a new space called Metaspace.
The consequences of the PermGen removal is that obviously the PermSize and MaxPermSize JVM arguments are ignored and you will never get a java.lang.OutOfMemoryError: PermGen error.
However that doesn't mean you won't have to worry about the class metadata memory footprint and it does not eliminate class and classloader memory leaks.

Most allocations for the class metadata are now allocated out of native memory and classes used for describing the class metadata are removed. The Metaspace will dynamically re-size depending on the application demand at runtime. There is obviously some garbage collection involved but I don't think that there is much to worry about here unless you have a problem of classes, classloaders memory leak or an inadequate sizing of the metaspace (as you can specify the maximum metaspace capacity with MaxMetaspaceSize otherwise it is limited by the amount of available native memory).

Small VM


The goal here is to have a VM which is no more than 3Mb by allowing some features to be excluded at build time. The motivation behind this is to allow the JVM to run on small devices which have very strict static and dynamic memory-footprint requirements.

Parallel array sorting

Java 8 introduces a new API for sorting: Arrays#parallelSort.

Arrays#parallelSort uses Fork/Join framework introduced in Java 7 to assign the sorting tasks to multiple threads available in the thread pool.



References:
https://leanpub.com/whatsnewinjava8/read
http://java.dzone.com/articles/java-8-permgen-metaspace
http://java.dzone.com/articles/introduction-functional-1

JDK 7 Features

switch on String

Before JDK 7, only integral types can be used as selector for switch-case statement. In JDK 7, you can use a String object as the selector. For example,

String day = "SAT";
switch (day) {
   case "MON": System.out.println("Monday"); break;
   case "TUE": System.out.println("Tuesday"); break;
   case "WED": System.out.println("Wednesday"); break;
   case "THU": System.out.println("Thursday"); break;
   case "FRI": System.out.println("Friday"); break;
   case "SAT": System.out.println("Saturday"); break;
   case "SUN": System.out.println("Sunday"); break;
   default: System.out.println("Invalid");
}

String.equals() method is used in comparison, which is case-sensitive.

Binary Literals with prefix "0b"

In JDK 7, you can express literal values in binary with prefix '0b' (or '0B') for integral types (byte, short, int and long), similar to C/C++ language. Before JDK 7, you can only use octal values (with prefix '0') or hexadecimal values (with prefix '0x' or '0X').

BEFORE:

public void testBinaryIntegralLiterals(){
 
        int binary = 8;
 
        if (binary == 8){
            System.out.println(true);
        } else{
            System.out.println(false);
        }
}

AFTER:

public void testBinaryIntegralLiterals(){
 
        int binary = 0b1000; //2^3 = 8
 
        if (binary == 8){
            System.out.println(true);
        } else{
            System.out.println(false);
        }
}

Underscore for Numeric Literals

In JDK 7, you could insert underscore(s) '_' in between the digits in an numeric literals (integral and floating-point literals) to improve readability. For example,

int anInt = 0b10101000_01010001_01101000_01010001;
double aDouble = 3.1415_9265;
float  aFloat = 3.14_15_92_65f;

Catching Multiple Exception Types

In JDK 7, a single catch block can handle more than one exception types. For example, before JDK 7, you need two catch blocks to catch two exception types although both perform identical task:
try {
   ......
} catch(ClassNotFoundException ex) {
   ex.printStackTrace();
} catch(SQLException ex) {
   ex.printStackTrace();
}
In JDK 7, you could use one single catch block, with exception types separated by '|'.
try {
   ......
} catch(ClassNotFoundException|SQLException ex) {
   ex.printStackTrace();
}

The try-with-resources Statement a.k.a Automatic Resource Management

For example, before JDK 7, we need to use a finally block, to ensure that a resource is closed regardless of whether the try statement completes normally or abruptly. The code is messy!
import java.io.*;
// Copy from one file to another file character by character.
// Pre-JDK 7 requires you to close the resources using a finally block.
public class FileCopyPreJDK7 {
   public static void main(String[] args) {
      BufferedReader in = null;
      BufferedWriter out = null;
      try {
         in  = new BufferedReader(new FileReader("in.txt"));
         out = new BufferedWriter(new FileWriter("out.txt"));
         int charRead;
         while ((charRead = in.read()) != -1) {
            System.out.printf("%c ", (char)charRead);
            out.write(charRead);
         }
      } catch (IOException ex) {
         ex.printStackTrace();
      } finally {            // always close the streams
         try {
            if (in != null) in.close();
            if (out != null) out.close();
         } catch (IOException ex) {
            ex.printStackTrace();
         }
      }
 
      try {
         in.read();   // Trigger IOException: Stream closed
      } catch (IOException ex) {
         ex.printStackTrace();
      }
   }
}
JDK 7 introduces a try-with-resources statement, which ensures that each of the resources in try(resources) is closed at the end of the statement. This results in cleaner codes.
import java.io.*;
// Copy from one file to another file character by character.
// JDK 7 has a try-with-resources statement, which ensures that
// each resource opened in try() is closed at the end of the statement.
public class FileCopyJDK7 {
   public static void main(String[] args) {
      try (BufferedReader in  = new BufferedReader(new FileReader("in.txt"));
           BufferedWriter out = new BufferedWriter(new FileWriter("out.txt"))) {
         int charRead;
         while ((charRead = in.read()) != -1) {
            System.out.printf("%c ", (char)charRead);
            out.write(charRead);
         }
      } catch (IOException ex) {
         ex.printStackTrace();
      }
   }
}

Type Inference for Generic Instance Creation

import java.util.*;
public class JDK7GenericTest {
   public static void main(String[] args) {
      // Pre-JDK 7
      List<String> lst1 = new ArrayList<String>();
      // JDK 7 supports limited type inference for generic instance creation
      List<String> lst2 = new ArrayList<>();
 
      lst1.add("Mon");
      lst1.add("Tue");
      lst2.add("Wed");
      lst2.add("Thu");
 
      for (String item: lst1) {
         System.out.println(item);
      }
 
      for (String item: lst2) {
         System.out.println(item);
      }
   }
}

Fork Join framework in Java 7


Fork join framework exists even before Java 7 but as a separate JSR. It has been added as new feature in Java 7 to make it part of standard Java 7 core library. Fork join framework allows you to write code which can take advantage of multiple cores present in modern servers. 

Fork-join functionality is achieved by ForkjoinTask object, it has two method fork() and join () Method.
  • The fork() method allows  a new ForkJoinTask to be launched from an existing one.
  • The join() method allows a ForkJoinTask to wait for the completion of another one.
Again ForkjoinTask object has been of two types: RecursiveAction and RecursiveTask which is more specialized form of this instance. While RecursiveAction represent executions that do not yield a return value, Instances of RecursiveTask yield return values.

Thread vs Process in Java

1) Both process and Thread are independent path of execution but one process can have multiple Threads.
2) Every process has its own memory space, executable code and a unique process identifier (PID) while every thread has its own stack in Java but it uses process main memory and share it with other threads.
3) Threads are also refereed as task or light weight process (LWP) in operating system
4) Threads from same process can communicate with each other by using Programming language construct like wait and notify in Java and much simpler than inter process communication.
5) Another difference between Process and Thread in Java is that it's How Thread and process are created. It's easy to create Thread as compared to Process which requires duplication of parent process.
6) All Threads which is part of same process share system resource like file descriptors , Heap Memory and other resource but each Thread has its own Exception handler and own stack in Java.

There were some of the fundamental difference between Process and Thread in Java. Whenever you talk about Process vs Thread, just keep in mind that one process can spawn multiple Thread and share same memory in Java. Each thread has its own stack.

Some linux command map Java thread with light weight process or lwp, e.g. if you use prstat command in Solaris, you can get how many light weight process or Thread a particular Java program is using.

Why wait, notify and notifyAll is defined in Object Class and not on Thread class in Java

1) Wait and notify is not just normal methods or synchronization utility, more than that they are communication mechanism between two threads in Java. And Object class is correct place to make them available for every object if this mechanism is not available via any java keyword like synchronized. Remember synchronized and wait notify are two different area and don’t confuse that they are same or related. Synchronized is to provide mutual exclusion and ensuring thread safety of Java class like race condition while wait and notify are communication mechanism between two thread.

2 )Locks are made available on per Object basis, which is another reason wait and notify is declared in Object class rather then Thread class.

3) In Java in order to enter critical section of code, Threads needs lock and they wait for lock, they don't know which threads holds lock instead they just know the lock is hold by some thread and they should wait for lock instead of knowing which thread is inside the synchronized block and asking them to release lock. this analogy fits with wait and notify being on object class rather than thread in Java.


Synchronization, Synchroinzed Block, Method, locking and Threadsafety in Java

Multithreading and synchronization is a very important topic for any Java programmer.

Synchronization in Java

Synchronization in Java is possible by using Java keywords "synchronized" and "volatile”. Concurrent access of shared objects in Java introduces to kind of errors: thread interference and memory consistency errors and to avoid these errors you need to properly synchronize your Java object to allow mutual exclusive access of critical section to two threads.

Need of Synchronization

If your code is executing in multi-threaded environment, you need synchronization for objects, which are shared among multiple threads, to avoid any corruption of state or any kind of unexpected behaviour. Synchronization in Java will only be needed if shared object is mutable. if your shared object is either read only or immutable object, than you don't need synchronization, despite running multiple threads.
if all the threads are only reading value then you don't require synchronization in Java. JVM guarantees that Java synchronized code will only be executed by one thread at a time.
  1. synchronized keyword in Java provides locking, which ensures mutual exclusive access of shared resource and prevent data race.
  2. synchronized keyword also prevent reordering of code statement by compiler which can cause subtle concurrent issue if we don't use synchronized or volatile keyword
  3. synchronized keyword involve locking and unlocking. before entering into synchronized method or block thread needs to acquire the lock, at this point it reads data from main memory than cache and when it release the lock, it flushes write operation into main memory which eliminates memory inconsistency errors.
You can have both static synchronized method and non static synchronized method and synchronized blocks in Java but we can not have synchronized variable in java

Using synchronized keyword with variable is illegal and will result in compilation error. Instead of synchronized variable in Java, you can have java volatile variable, which will instruct JVM threads to read value of volatile variable from main memory and don’t cache it locally. 

Block synchronization in Java is preferred over method synchronization in Java because by using block synchronization, you only need to lock the critical section of code instead of whole method. Since synchronization in Java comes with cost of performance, we need to synchronize only part of code which absolutely needs to be synchronized.

Important points

1. Synchronized keyword in Java is used to provide mutual exclusive access of a shared resource with multiple threads in Java. Synchronization in Java guarantees that, no two threads can execute a synchronized method which requires same lock simultaneously or concurrently.

2. You can use java synchronized keyword only on synchronized method or synchronized block.

3. When ever a thread enters into java synchronized method or block it acquires a lock and whenever it leaves java synchronized method or block it releases the lock. Lock is released even if thread leaves synchronized method after completion or due to any Error or Exception.

4. Java Thread acquires an object level lock when it enters into an instance synchronized java method and acquires a class level lock when it enters into static synchronized java method.

5. Java synchronized keyword is re-entrant in nature it means if a java synchronized method calls another synchronized method which requires same lock then current thread which is holding lock can enter into that method without acquiring lock.

6. Java Synchronization will throw NullPointerException if object used in java synchronized block is null e.g. synchronized (myInstance) will throws java.lang.NullPointerException if myInstance is null.

7. One Major disadvantage of Java synchronized keyword is that it doesn't allow concurrent read, which can potentially limit scalability. By using concept of lock stripping and using different locks for reading and writing, you can overcome this limitation of synchronized in Java. You will be glad to know that java.util.concurrent.locks.ReentrantReadWriteLock provides ready made implementation of ReadWriteLock in Java.

8. One more limitation of java synchronized keyword is that it can only be used to control access of shared object within the same JVM. If you have more than one JVM and need to synchronized access to a shared file system or database, the Java synchronized keyword is not at all sufficient. You need to implement a kind of global lock for that.

9. Java synchronized keyword incurs performance cost. Synchronized method in Java is very slow and can degrade performance. So use synchronization in java when it absolutely requires and consider using java synchronized block for synchronizing critical section only.

10. Java synchronized block is better than java synchronized method in Java because by using synchronized block you can only lock critical section of code and avoid locking whole method which can possibly degrade performance.

11. Its possible that both static synchronized and non static synchronized method can run simultaneously or concurrently because they lock on different object.

12. From java 5 after change in Java memory model reads and writes are atomic for all variables declared using volatile keyword (including long and double variables) and simple atomic variable access is more efficient instead of accessing these variables via synchronized java code.

13. Java synchronized code could result in deadlock or starvation while accessing by multiple thread if synchronization is not implemented correctly.

14. According to the Java language specification you can not use Java synchronized keyword with constructor it’s illegal and result in compilation error. So you can not synchronized constructor in Java which seems logical because other threads cannot see the object being created until the thread creating it has finished it.

15. You cannot apply java synchronized keyword with variables and can not use java volatile keyword with method.

16. Java.util.concurrent.locks extends capability provided by java synchronized keyword for writing more sophisticated programs since they offer more capabilities e.g. Reentrancy and interruptible locks.

17. Java synchronized keyword also synchronizes memory. In fact java synchronized synchronizes the whole of thread memory with main memory.

18. Important method related to synchronization in Java are wait(), notify() and notifyAll() which is defined in Object class. They are defined in java.lang.object class instead of java.lang.Thread

19. Do not synchronize on non final field on synchronized block in Java. because reference of non final field may change any time and then different thread might synchronizing on different objects i.e. no synchronization at all. example of synchronizing on non final field :


private String lock = new String("lock");
synchronized(lock){
System.out.println("locking on :"  + lock);
}

20. Its not recommended to use String object as lock in java synchronized block because string is immutable object and literal string and interned string gets stored in String pool. so by any chance if any other part of code or any third party library used same String as there lock then they both will be locked on same object despite being completely unrelated which could result in unexpected behavior and bad performance. instead of String object its advised to use new Object() for Synchronization in Java on synchronized block.


private static final String LOCK = "lock";   //not recommended
private static final Object OBJ_LOCK = new Object(); //better

public void process() {
   synchronized(LOCK) {
      ........
   }
}